The photoelectrical properties of multilayer WS₂ nanoflakes including field-effect, photosensitive and gas sensing are comprehensively and systematically studied. The transistors perform an n-type behavior with electron mobility of 12 cm(2)/Vs and exhibit high photosensitive characteristics with response time (τ) of <20 ms, photo-responsivity (Rλ) of 5.7 A/W and external quantum efficiency (EQE) of 1118%. In addition, charge transfer can appear between the multilayer WS₂ nanoflakes and the physical-adsorbed gas molecules, greatly influencing the photoelectrical properties of our devices. The ethanol and NH₃ molecules can serve as electron donors to enhance the Rλ and EQE significantly. Under the NH3 atmosphere, the maximum Rλ and EQE can even reach 884 A/W and 1.7 × 10(5)%, respectively. This work demonstrates that multilayer WS₂ nanoflakes possess important potential for applications in field-effect transistors, highly sensitive photodetectors, and gas sensors, and it will open new way to develop two-dimensional (2D) WS₂-based optoelectronics.