Introduction: Inflammation is a key pathological hallmark of several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and familial amyloidotic polyneuropathy (FAP). Among all inflammatory cytokines associated with FAP, IL-1β, in particular, has been implicated in playing a key pathogenic role. In the present study, we sought to investigate whether blocking IL-1β signaling provides disease-modifying benefits in an FAP mouse model.
Methods: We assessed the effect of chronic administration of Anakinra, an IL-1 antagonist, on FAP pathogenesis in vivo, using real-time polymerase chain reaction (qPCR), semi-quantitative immunohistochemistry (SQ-IHC), western blot and nerve morphometric analyses.
Results: We found that treatment with Anakinra prevents transthyretin (TTR) extracellular deposition in sciatic nerve, protecting unmyelinated nerve fibers from aggregate-induced degeneration. Moreover, Anakinra administration significantly suppressed IL-1 signaling pathway and inhibited apoptosis and nitrative stress.
Conclusions: The present work highlights the relevance of the IL-1 signaling pathway in the pathophysiology of FAP. Our results bring to light the importance of non-amyloid targets in the therapeutic strategies for this disorder. Thus, we propose the use of Anakinra as a potential therapeutic agent for TTR-related amyloidosis.
Keywords: Anakinra; cytokines; familial amyloidotic polyneuropathy; neurodegeneration; neuroinflammation; peripheral nervous system.