Contributions of stress corrosion and cyclic fatigue to subcritical crack growth in a dental glass-ceramic

Dent Mater. 2014 Aug;30(8):884-90. doi: 10.1016/j.dental.2014.05.026. Epub 2014 Jun 14.

Abstract

Objective: The objective of this study was to test the following hypotheses: (1) both cyclic degradation and stress-corrosion mechanisms result in subcritical crack growth (SCG) in a fluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent) and (2) there is an interactive effect of stress corrosion and cyclic fatigue to accelerate subcritical crack growth.

Methods: Rectangular beam specimens were fabricated using the lost-wax process. Two groups of specimens (N=30/group) with polished (15μm) or air-abraded surface were tested under rapid monotonic loading. Additional polished specimens were subjected to cyclic loading at two frequencies, 2Hz (N=44) and 10Hz (N=36), and at various stress amplitudes. All tests were performed using a fully articulated four-point flexure fixture in deionized water at 37°C. The SCG parameters were determined using the ratio of inert strength Weibull modulus to lifetime Weibull modulus. A general log-linear model was fit to the fatigue lifetime data including time to failure, frequency, peak stress, and the product of frequency and logarithm of stress in ALTA PRO software.

Results: SCG parameters determined were n=21.7 and A=4.99×10(-5) for 2Hz, and n=19.1 and A=7.39×10(-6) for 10Hz. After fitting the general log-linear model to cyclic fatigue data, the coefficients of the frequency term (α1), the stress term (α2), and the interaction term (α3) had estimates and 95% confidence intervals of α1=-3.16 (-15.1, 6.30), α2=-21.2 (-34.9, -9.73), and α3=0.820 (-1.59, 4.02). Only α2 was significantly different from zero.

Significance: (1) Cyclic fatigue does not have a significant effect on SCG in the fluorapatite glass-ceramic evaluated and (2) there was no interactive effect between cyclic degradation and stress corrosion for this material.

Keywords: Air abrasion; Cyclic fatigue; Dental ceramic; Pressable ceramic; Stress corrosion.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Ceramics*
  • Corrosion*
  • Dental Stress Analysis*
  • Materials Testing*

Substances

  • Glass ceramics