Ependymomas are rare tumors of the central nervous system (CNS). They are classified based on tumor histology and grade, but the prognostic value of the WHO grading system remains controversial. Treatment is mainly surgical and by radiation. An improved knowledge of ependymoma biology is important to elucidate the pathogenesis, to improve classification schemes, and to identify novel potential treatment targets. Only 113 ependymoma karyotypes with chromosome aberrations are registered in the Mitelman database. We present the first study of ependymoma genomes combining karyotyping and high resolution comparative genomic hybridization (HR-CGH). Nineteen tumor samples were collected from three pediatric and 15 adult patients treated at Oslo University Hospital between 2005 and 2012. Histological diagnoses included subependymoma and myxopapillary ependymoma (WHO grade I), ependymoma (WHO grade II) and anaplastic ependymoma (WHO grade III). Four tumors were intraspinal and 15 were intracranial. Seventeen samples were successfully karyotyped, HR-CGH analysis was undertaken on 17 samples, and 15 of 19 tumors were analyzed using both methods. Twelve tumors had karyotypic abnormalities, mostly gains or losses of whole chromosomes. Structural rearrangements were found in four tumors, in two of which 2p23 was identified as a breakpoint region. Twelve tumors displayed genomic imbalances by HR-CGH analysis with loss of material at 6q as the most common. 6q loss, which was detected by one or both methods in seven of 12 (58%) abnormal tumors, and 5p gain (observed in five tumors; 42%) were the most common genomic aberrations in this series.