Pigs might be exposed to lipopolysaccharides (LPS) and deoxynivalenol (DON) at the same time, and both toxins are thought to interactively affect the intestinal barrier, the innate immune system, and the xenobiotics metabolism. Hence, we aimed at examining the single and combined effects of both toxins on nutrient digestibility and DON metabolism. For this purpose, barrows (26 ± 4 kg) were fed restrictedly either a control diet (CON) or a diet contaminated with 3.1 mg DON/kg (DON) for 37 days. At day 37 of the experiment, pigs were infused intravenously for 60 min either with 100 μg DON/kg body weight (BW) (CON-DON), 7.5 μg LPS/kg BW (CON-LPS, DON-LPS) or a combination of both substances (CON-DON + LPS), or physiological saline (CON-CON, DON-CON). Blood samples were collected frequently until 3.25 h before the pigs were sacrificed for bile, liver, and kidney collection. The apparent digestibility of N-free extractives was significantly increased by 1 % when the DON-contaminated diet was fed. The total DON content in blood was significantly higher in endotoxemic pigs (34.8 ng/mL; CON-DON + LPS) when compared to the pigs infused with DON alone (18.8 ng/mL; CON-DON) while bile concentrations were not influenced by LPS. DON residue levels in liver and kidney closely reflected the treatment effects as described for blood. In contrast to DON infusion, the LPS challenge resulted in a significantly lower total DON concentration (13.2 vs. 7.5 ng/mL in groups DON-CON and DON-LPS, respectively) when the pigs were exposed to DON through the diet. The conjugation degree for DON in blood and bile was not influenced by treatments. In conclusion, endotoxemic pigs are characterized by higher DON residue levels in blood, liver, and kidney, probably by a compromised elimination.