Background: Biologic markers of infection and inflammation have been associated with Autism Spectrum Disorders (ASD) but prior studies have largely relied on specimens taken after clinical diagnosis. Research on potential biologic markers early in neurodevelopment is required to evaluate possible causal pathways and screening profiles.
Objective: To investigate levels of cytokines and chemokines in newborn blood specimens as possible early biologic markers for autism.
Methods: We conducted a population-based case-control study nested within the cohort of infants born from July 2000 to September 2001 to women who participated in the prenatal screening program in Orange County, California, USA. The study population included children ascertained from the California Department of Developmental Services with Autism Spectrum Disorder (ASD, n = 84), or developmental delay but not ASD (DD, n = 49), and general population controls randomly sampled from the birth certificate files and frequency matched to ASD cases on sex, birth month and birth year (GP, n = 159). Cytokine and chemokine concentrations were measured in archived neonatal blood specimens collected for routine newborn screening.
Results: Cytokines were not detected in the vast majority of newborn samples regardless of case or control status. However, the chemokine monocyte chemotactic protein-1 (MCP-1) was elevated and the chemokine Regulated upon Activation Normal T-Cell Expressed and Secreted (RANTES) was decreased in ASD cases compared to GP controls. The chemokines macrophage inflammatory protein-1alpha (MIP-1α) and RANTES were decreased in children with DD compared to GP controls.
Conclusion: Measurement of immune system function in the first few days of life may aid in the early identification of abnormal neurodevelopment and shed light on the biologic mechanisms underlying normal neurodevelopment.