In fish, the defence system recognises pathogenic microorganisms via pathogen recognition receptors (PRRs) that sense particular structures of the pathogens; the so-called pathogen associated molecular patterns (PAMPs) such as bacterial lipopolysaccharides (LPSs). The result of the PAMP-PRR interactions leads to complex and orchestrated immune responses. In this study, Sparus aurata (Gilthead seabream) were intraperitoneally injected with purified lipopolysaccharide (LPS) from Aeromonas salmonicida (As)- and Vibrio anguillarum (Va) (1 mg*Kgfish(-1)), both Gram negative bacteria responsible for vibriosis and furunculosis respectively, therefore causing an impact upon marine fish cultures. Head-kidney, intestine, spleen, liver and blood samples were collected at 3, 6, 12 and 24 h post-injection. Plasma levels of cortisol, prostaglandins and lactate were measured and were significantly increased after As-LPS and Va-LPS treatment. Furthermore, tissue-specific differences of the gene regulatory patterns were evident for each LPS. When monocyte/macrophage cell cultures were challenged with As-LPS and Va-LPS, the pro-inflammatory cytokine mRNA abundances present a similar pattern of response. However, As-LPS always triggered a stronger response concerning TNFα, IL1β and cyclooxygenase-2 (COX2) mRNA abundance as well as PGE2 levels in the supernatant. Overall, the results indicate that specific LPSs do not activate different pro-inflammatory responses and that the observed gene expression pattern is tissue and concentration dependent.
Keywords: Defence system; Lipopolysaccharide; Sparus aurata.
Copyright © 2014 Elsevier Ltd. All rights reserved.