Radiation therapy is one of the standard therapeutic modalities for esophageal cancer, achieving its main antitumor efficacy through DNA damage. However, accumulating evidence shows that radiotherapy can substantially alter the tumor microenvironment, particularly with respect to its effects on immune cells. We hypothesized that the immune response elicited by radiotherapy may be as important as the radiation itself for successful treatment. More specifically, immunomodulatory cytokines may enhance the effectiveness of radiotherapy. To investigate this hypothesis, we measured changes in the serum interferon-gamma (IFN- γ ) and interleukin-2 (IL-2) concentrations during radiotherapy and compared these modifications with outcomes. We found that serum concentrations of IL-2 and IFN- γ were positively associated with local response to radiotherapy in esophageal cancer. More generally, the intensity of the radiotherapy-elicited immune response was positively associated with local response to radiotherapy in esophageal cancer. Changes in serum IL-2 and IFN- γ concentrations were further associated with increased risks of acute hematologic toxicity and acute organ toxicity of the esophagus, lung, and skin. These results suggest that deciphering the mechanisms of radiotherapy-elicited immune response may help in the development of therapeutic interventions that would enhance the efficacy of radiotherapy and convert some ineffective responses to effective responses.