Selective prevention of mechanical hyperalgesia after incision by spinal ERK1/2 inhibition

Eur J Pain. 2015 Feb;19(2):225-35. doi: 10.1002/ejp.540. Epub 2014 Jun 26.

Abstract

Background: Activation of extracellular signal-regulated kinases (ERK1/2) has been shown to play an important role in several pain states. Here we investigated the ERK1/2 contribution to non-evoked and evoked pain-like behaviour in rats after surgical incision.

Methods: Spinal phosphorylation of ERK1 and ERK2 was assessed 15 min, 4 h, 24 h and 5 days after plantar incision and sham incision. The effect of PD98059, a specific inhibitor of ERK1/2 activation, administered intrathecally (IT) 1 h before or 2 h after incision on spinal ERK1 and ERK2 phosphorylation was assessed. In behavioural experiments, the effect of PD98059 administered 1 h before or after incision on non-evoked pain behaviour and mechanical and heat hyperalgesia was assessed.

Results: Phosphorylated ERK1 and ERK2 were rapidly increased in the ipsilateral dorsal horn from rats after incision post-operatively. This increased ERK1 and ERK2 phosphorylation were blocked by PD98059 administered before incision. In congruence, IT administration of PD98059 before incision delayed mechanical hyperalgesia after incision; however, administration after incision had only a modest effect on mechanical hyperalgesia. In addition, PD98059 did not affect non-evoked pain behaviour or heat hyperalgesia after incision.

Conclusion: The results suggest that spinal ERK1 and ERK2 are involved in regulation of pain after incision differentially with regard to the pain modality. Furthermore, blockade of ERK1/2 activation was most effective in a preventive manner, a condition which is rare after incision. Spinal ERK1/2 inhibition could therefore be a very useful tool to manage selectively movement-evoked pain after surgery in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Flavonoids / pharmacology*
  • Hyperalgesia / prevention & control*
  • MAP Kinase Signaling System / drug effects*
  • Male
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors*
  • Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors*
  • Pain / metabolism*
  • Pain Measurement / methods
  • Pain, Postoperative / metabolism
  • Protein Kinase Inhibitors / pharmacology*
  • Rats, Sprague-Dawley
  • Spinal Cord / metabolism

Substances

  • Flavonoids
  • Protein Kinase Inhibitors
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one