Objective: The purpose of this study was to analyze the role of the sizes of solitary pulmonary nodules (SPNs) in predicting their potential malignancies.
Methods: A total of 379 patients with pathologically confirmed SPNs were enrolled in this study. They were divided into three groups based on the SPN sizes: ≤10, 11-20, and >20 mm. The computed tomography (CT) findings of these SPNs were analyzed in these three groups to identify the malignant and benign SPNs. The risk factors were analyzed using binary logistic regression analysis.
Results: Of these 379 patients, 120 had benign SPNs and 259 had malignant SPNs. In the ≤10 mm SPN group, air cavity density was the risk factor for malignancy, with the sensitivity, specificity, and accuracy being 77.8%, 75.0%, and 76.3%. In the 11-20 mm SPN group, age, glitches and vascular aggregation were the risk factors for malignancy, with the sensitivity, specificity, and accuracy being 91.3%, 56.9%, and 81.5%. In the >20 mm SPN group, age, lobulation, and vascular aggregation were the risk factors for malignancy, with the sensitivity, specificity, and accuracy being 88.6%, 57.1%, and 79.1%.
Conclusions: According to CT findings of SPNs, age, glitches, lobulation, vascular aggregation, and air cavity density are the risk factors of malignancy, whereas calcification and satellite lesions are the protective factors. During the course of development from small to large nodules, air cavity density could be firstly detected in early stages, followed by glitches and vascular aggregation. Lobulation is associated with relatively large lesions.
Keywords: Solitary pulmonary nodules (SPNs); computed tomography (CT); logistic regression; risk factors.