Liquid and glassy oxide materials play a vital role in multiple scientific and technological disciplines, but little is known about the part played by oxygen-oxygen interactions in the structural transformations that change their physical properties. Here we show that the coordination number of network-forming structural motifs, which play a key role in defining the topological ordering, can be rationalized in terms of the oxygen-packing fraction over an extensive pressure and temperature range. The result is a structural map for predicting the likely regimes of topological change for a range of oxide materials. This information can be used to forecast when changes may occur to the transport properties and compressibility of, e.g., fluids in planetary interiors, and is a prerequisite for the preparation of new materials following the principles of rational design.
Keywords: high pressure; high temperature; network structures; oxide ion radius; oxygen packing.