Assessing the MODIS crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil

ScientificWorldJournal. 2014:2014:863141. doi: 10.1155/2014/863141. Epub 2014 Apr 10.

Abstract

Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.

MeSH terms

  • Agriculture*
  • Algorithms
  • Brazil
  • Crops, Agricultural*
  • Geography
  • Glycine max*
  • Humans
  • Satellite Imagery*