Technological advancement has opened the door to systematic genetics in mammalian cells. Genome-scale loss-of-function screens can assay fitness defects induced by partial gene knockdown, using RNA interference, or complete gene knockout, using new CRISPR techniques. These screens can reveal the basic blueprint required for cellular proliferation. Moreover, comparing healthy to cancerous tissue can uncover genes that are essential only in the tumor; these genes are targets for the development of specific anticancer therapies. Unfortunately, progress in this field has been hampered by off-target effects of perturbation reagents and poorly quantified error rates in large-scale screens. To improve the quality of information derived from these screens, and to provide a framework for understanding the capabilities and limitations of CRISPR technology, we derive gold-standard reference sets of essential and nonessential genes, and provide a Bayesian classifier of gene essentiality that outperforms current methods on both RNAi and CRISPR screens. Our results indicate that CRISPR technology is more sensitive than RNAi and that both techniques have nontrivial false discovery rates that can be mitigated by rigorous analytical methods.
Keywords: CRISPR; RNAi; cancer; essential genes; shRNA.
© 2014 The Authors. Published under the terms of the CC BY 4.0 license.