The composition and evolution of plumes generated in a resonant infrared (IR) laser desorption of low-temperature ices is investigated via a recently developed two-step laser desorption and ionization mass spectrometry (2S-LAIMS) technique where a neutral plume is ejected by an IR laser pulse and ionized by a UV laser pulse for analysis via time-of-flight mass spectrometry. By varying the delay between the lasers, we can construct a complete time-resolved model of the ejected plume components. We found that water ices containing mixtures of polar and nonpolar analytes displayed complex mass spectral profiles that varied as the plume evolved. In these samples, the low-volatility polar analytes and clusters were restricted to the early part of the plume, whereas volatile or nonpolar analytes were spread throughout the plume. The distributions of low-volatility polar species, clusters, and impurities from the copper substrate were well-represented by single Maxwell-like distributions centered at high velocities (600-800 m s(-1)), while nonpolar, volatile species contained two distinct components, indicating both ablation and thermal desorption processes. Characterization of plume distributions can therefore provide new insight into an analyte's chemical identity and can aid in assignment of otherwise ambiguous signals in the mass spectra.