Modeling higher-order correlations within cortical microcolumns

PLoS Comput Biol. 2014 Jul 3;10(7):e1003684. doi: 10.1371/journal.pcbi.1003684. eCollection 2014 Jul.

Abstract

We statistically characterize the population spiking activity obtained from simultaneous recordings of neurons across all layers of a cortical microcolumn. Three types of models are compared: an Ising model which captures pairwise correlations between units, a Restricted Boltzmann Machine (RBM) which allows for modeling of higher-order correlations, and a semi-Restricted Boltzmann Machine which is a combination of Ising and RBM models. Model parameters were estimated in a fast and efficient manner using minimum probability flow, and log likelihoods were compared using annealed importance sampling. The higher-order models reveal localized activity patterns which reflect the laminar organization of neurons within a cortical column. The higher-order models also outperformed the Ising model in log-likelihood: On populations of 20 cells, the RBM had 10% higher log-likelihood (relative to an independent model) than a pairwise model, increasing to 45% gain in a larger network with 100 spatiotemporal elements, consisting of 10 neurons over 10 time steps. We further removed the need to model stimulus-induced correlations by incorporating a peri-stimulus time histogram term, in which case the higher order models continued to perform best. These results demonstrate the importance of higher-order interactions to describe the structure of correlated activity in cortical networks. Boltzmann Machines with hidden units provide a succinct and effective way to capture these dependencies without increasing the difficulty of model estimation and evaluation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials / physiology*
  • Algorithms
  • Animals
  • Cats
  • Cluster Analysis
  • Models, Neurological*
  • Neurons / physiology*
  • Photic Stimulation
  • Visual Cortex / physiology*