Optical properties of tissues are required for theoretical modeling of Laser Ablation in tumor therapy. The light scattering characteristic of tissues is described by the anisotropy coefficient, g. The relationship between the angular distribution of scattered light and g is given by the Henyey-Greenstein (HG) phase function. This work describes the estimation of anisotropy coefficients of ex vivo swine pancreas, liver and muscle at 1064 nm. The intensities of scattered light at fixed angles were measured under repeatability conditions. Experimental data were fitted with a two-term HG, estimating the anisotropy coefficients for the forward (e.g., 0.956 for pancreas, 0.964 for liver and 0.968 for muscle) and the backward (e.g., -0.481 for pancreas, -0.414 for liver and -0.372 for muscle) scattering. Experimental set up employed to estimate the anisotropy coefficient of biological tissues. The image on the left depicts the holder used to house tissue, laser fiber and photodetector; on the left an example of scattered light beam is shown, as well as the effect due to Snell's law.
Keywords: Henyey-Greenstein phase function; anisotropy coefficient; goniometric measurements; pancreas; scattering.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.