Background: The tumor suppressor protein phosphatase 2A (PP2A) is frequently inactivated in human cancer and phosphorylation of its catalytic subunit (p-PP2A-C) at tyrosine-307 (Y307) has been described to inhibit this phosphatase. However, its molecular and clinical relevance in colorectal cancer (CRC) remains unclear.
Methods: p-PP2A-C Y307 was determined by immunoblotting in 7 CRC cell lines and 35 CRC patients. CRC cells were treated with the PP2A activator forskolin alone or combined with the PP2A inhibitor okadaic acid, 5-fluorouracil and oxaliplatin. We examined cell growth, colonosphere formation, caspase activity and AKT and ERK activation.
Results: PP2A-C was found hyperphosphorylated in CRC cell lines. Forskolin dephosphorylated and activated PP2A, impairing proliferation and colonosphere formation, and inducing activation of caspase 3/7 and changes in AKT and ERK phosphorylation. Moreover, forskolin showed additive effects with 5-fluorouracil and oxaliplatin treatments. Analysis of p-PP2A-C Y307 in primary tumors confirmed the presence of this alteration in a subgroup of CRC patients.
Conclusions: Our data show that PP2A-C hyperphosphorylation is a frequent event that contributes to PP2A inhibition in CRC. Antitumoral effects of forskolin-mediated PP2A activation suggest that the analysis of p-PP2A-C Y307 status could be used to identify a subgroup of patients who would benefit from treatments based on PP2A activators.
Keywords: 5-Fluorouracil; Colorectal cancer; Forskolin; Oxaliplatin; PP2A-C phosphorylation.
Copyright © 2014 Elsevier B.V. All rights reserved.