We investigated organic molecular compositions of summertime aerosols collected at the summit of Mt. Fuji (3776 m a.s.l.) in July-August 2009. More than 120 organic species were identified using GC/MS. Concentrations of both primary and secondary organic aerosol (SOA) tracers in whole-day samples were 4-20 times higher than those in nighttime samples, suggesting that valley breeze is an efficient mechanism to uplift the aerosols and precursors from the ground surface to mountaintop in daytime. Using a tracer-based method, we estimated the concentrations of secondary organic carbon (SOC) derived from isoprene, α/β-pinene, and β-caryophyllene to be 2.2-51.2 ngC m(-3) in nighttime and 227-1120 ngC m(-3) during whole-day. These biogenic SOCs correspond to 0.80-31.9% and 26.8-57.4% of aerosol organic carbon in nighttime and whole-day samples, respectively. This study demonstrates that biogenic SOA, which is controlled by the valley breeze, is a significant fraction of free tropospheric aerosols over Mt. Fuji in summer.