The present review is addressed to analyse the complex interplay between left ventricle and arterial tree in hypertension. The different methodological approaches to the analysis of ventricular vascular coupling in the time and frequency domain are discussed. Moreover, the role of hypertension-related changes of arterial structure and function (stiffness and wave reflection) on arterial load and how ventricular-vascular coupling modulates the process of left ventricular adaptation to hypertension are analysed.The different interplay between vascular bed and left ventricle emerges as the pathophysiological basis for the development of the multiple patterns of ventricular structural adaptation in hypertension and provides a pathway for the interpretation of systolic and diastolic functional abnormalities observed in hypertensive patients. Targeting the therapeutic approach to improve ventricular-vascular coupling may have relevant impact on reversing left ventricular hypertrophy and improving systolic and diastolic dysfunction.