Metabolic diseases result from multiple genetic and environmental factors. We report here that one manner in which environmental factors can contribute to metabolic disease progression is through modification to chromatin. We demonstrate that high fat diet leads to chromatin remodeling in the livers of C57BL/6J mice, as compared with mice fed a control diet, and that these chromatin changes are associated with changes in gene expression. We further show that the regions of greatest variation in chromatin accessibility are targeted by liver transcription factors, including HNF4α, CCAAT/enhancer-binding protein α (CEBP/α), and FOXA1. Repeating the chromatin and gene expression profiling in another mouse strain, DBA/2J, revealed that the regions of greatest chromatin change are largely strain-specific and that integration of chromatin, gene expression, and genetic data can be used to characterize regulatory regions. Our data indicate dramatic changes in the epigenome due to diet and demonstrate strain-specific dynamics in chromatin remodeling.
Keywords: Chromatin; Diet; Gene Regulation; Gene-environment Interaction; Liver Metabolism; Metabolic Disease.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.