Insulin receptor substrate-1 and Golgi phosphoprotein 3 are downstream targets of miR‑126 in esophageal squamous cell carcinoma

Oncol Rep. 2014 Sep;32(3):1225-33. doi: 10.3892/or.2014.3327. Epub 2014 Jul 11.

Abstract

Esophageal squamous cell carcinoma (ESCC) is a common histologic subtype in China. It has been suggested that abnormal expression of microRNAs (miRNAs) is associated with carcinogenesis. We investigated miR-126 expression and its potential targets in ESCC. The expression of miR-126 was detected in cancerous and paired paracancer tissues from 102 patients with ESCC. Target analysis of miR-126 was predicted using online tools. The effect of miR-126 expression on target proteins was assessed using miR-126 mimics or miR-126 inhibitors in ESCC cell lines. In addition, the impact of miR-126 on cell proliferation, apoptosis, migration and invasion was detected in ESCC cell lines. The expression of miR-126 was significantly lower in ESCC tissues, which was associated with tumor differentiation, lymph node metastasis, tumor in-depth and TNM stage. Insulin receptor substrate-1 (IRS-1) and Golgi phosphoprotein 3 (GOLPH3) were overexpressed in ESCC. Overexpression of IRS-1 was associated with cell differentiation, whereas GOLPH3 was related to lymph node metastasis, tumor invasion in-depth and TNM stage in ESCC patients. miR-126 mimics downregulated the expression of IRS-1 and GOLPH3 protein and suppressed the proliferation, migration and invasion of ESCC cells, whereas miR-126 inhibitors led to the opposite results. miR-126 suppressed the proliferation, migration and invasion of ESCC cells, and acted as a tumor suppressor in the carcinogenesis of ESCC. IRS-1 and GOLPH3 are downstream targets of miR-126 at the post-transcriptional level in ESCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Carcinoma, Squamous Cell / genetics*
  • Carcinoma, Squamous Cell / metabolism
  • Carcinoma, Squamous Cell / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Esophageal Neoplasms / genetics*
  • Esophageal Neoplasms / metabolism
  • Esophageal Neoplasms / pathology
  • Female
  • Humans
  • Insulin Receptor Substrate Proteins / genetics*
  • Insulin Receptor Substrate Proteins / metabolism
  • Male
  • Membrane Proteins / genetics*
  • Membrane Proteins / metabolism
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Neoplasm Invasiveness

Substances

  • GOLPH3 protein, human
  • IRS1 protein, human
  • Insulin Receptor Substrate Proteins
  • MIRN126 microRNA, human
  • Membrane Proteins
  • MicroRNAs