Following the emergence of the A(H1N1)pdm09 in humans, this novel influenza virus was reverse transmitted from infected people to swine population worldwide. In this study we investigated the molecular evolution of A(H1N1)pdm09 virus identified in pigs reared in a single herd. Nasal swabs taken from pigs showing respiratory distress were tested for influenza type A and A(H1N1)pdm09 by real-time RT-PCR assays. Virus isolation from positive samples was attempted by inoculation of nasal swabs samples into specific pathogen free embryonated chicken eggs (ECE) and complete genome sequencing was performed on virus strains after replication on ECE or from original swab sample. The molecular analysis of hemagglutinin (HA) showed, in four of the swine influenza viruses under study, a unique significant amino acid change, represented by a two-amino acid insertion at the HA receptor binding site. Phylogenetic analysis of HA, neuraminidase, and concatenated internal genes revealed a very similar topology, with viruses under study forming a separate cluster, branching outside the A(H1N1)pdm09 isolates recognized until 2014. The emergence of this new cluster of A(H1N1)pdm09 in swine raises further concerns about whether A(H1N1)pdm09 with new molecular characteristics will become established in pigs and potentially transmitted to humans.