Background: Cytochrome P450 (CYP) 2C19 is a very important drug metabolizing enzyme. Although the single nucleotide polymorphisms (SNPs) of CYP2C19 G681A and G636A have been suggested that they may increase the incidence of cardiovascular events, the relationship between SNPs in CYP2C19 and cerebral ischemic stroke (CIS) are unclear. The aim of this study was to investigate the correlation between the distribution of G681A and G636A polymorphisms in CYP2C19 gene and the risk of CIS in Chinese.
Methods: The peripheral blood DNA was extracted from 299 patients with CIS and 295 healthy controls. The genotyping was conducted using the polymerase chain reaction-restriction fragment length polymorphism. The sampled sequencing was applied to verify the correctness of genotyping results. Both the genotype and allele distributions were compared in patients with CIS and healthy controls.
Results: The frequencies of CYP2C19 681AA (11.7% vs. 2.7%; P = 0.000), 636AA (4.0% vs. 0.7%; P = 0.007), 636AG (7.0% vs. 2.2%; P = 0.038) genotype, CYP2C19 681A (30.9% vs. 20.8%; P = 0.000) and 636A (13.0% vs. 5.8%; P = 0.000) allele in the CIS group are significantly higher than those in the controls. The frequencies of CYP2C19 681AA (16.7% vs. 8.6%; P = 0.036), CYP2C19 636AA (7.0% vs. 2.2%; P = 0.038) genotype, CYP2C19 681A (36.4% vs. 27.6%; P = 0.023) and CYP2C19 636A (17.5% vs.10.3%; P = 0.010) allele in the recurrent stroke group are significantly higher than those in the first onset group. Multivariate logistic regression analysis of risk factors for cerebral ischemic stroke and recurrent stroke respectively suggests that the CYP2C19 681AA genotype may be an independent risk factor for CIS (OR = 6.179, 95% CI: 2.285 ~ 16.708; P = 0.000) and recurrent stroke (OR = 2.305, 95% CI: 1.121 ~ 4.743; P = 0.023).
Conclusions: The AA genotype and A allele of CYP2C19 G681A may be related to the occurrence and recurrence of cerebral ischemic stroke.