In recent years, (47)Sc has attracted attention because of its favorable decay characteristics (half-life, 3.35 d; average energy, 162 keV; Eγ, 159 keV) for therapeutic application and for SPECT imaging. The aim of the present study was to investigate the suitability of (47)Sc for radionuclide therapy in a preclinical setting. For this purpose a novel DOTA-folate conjugate (cm10) with an albumin-binding entity was used.
Methods: (47)Sc was produced via the (46)Ca(n,γ)(47)Ca[Formula: see text](47)Sc nuclear reaction at the high-flux reactor at the Institut Laue-Langevin. Separation of the (47)Sc from the target material was performed by a semi-automated process using extraction chromatography and cation exchange chromatography. (47)Sc-labeled cm10 was tested on folate receptor-positive KB tumor cells in vitro. Biodistribution and SPECT imaging experiments were performed in KB tumor-bearing mice. Radionuclide therapy was conducted with two groups of mice, which received either (47)Sc-cm10 (10 MBq) or only saline. Tumor growth and survival time were compared between the two groups of mice.
Results: Irradiation of (46)Ca resulted in approximately 1.8 GBq of (47)Ca, which subsequently decayed to (47)Sc. Separation of (47)Sc from (47)Ca was obtained with 80% yield in only 10 min. The (47)Sc was then available in a small volume (∼500 μL) of an ammonium acetate/HCl (pH 4.5) solution suitable for direct radiolabeling. (47)Sc-cm10 was prepared with a radiochemical yield of more than 96% at a specific activity of up to 13 MBq/nmol. In vitro (47)Sc-cm10 showed folate receptor-specific binding and uptake into KB tumor cells. In vivo SPECT/CT images allowed the visualization of accumulated radioactivity in KB tumors and in the kidneys. The therapy study showed a significantly delayed tumor growth in mice, which received (47)Sc-cm10 (10 MBq, 10 Gy) resulting in a more than 50% increase in survival time, compared with untreated control mice.
Conclusion: With this study, we demonstrated the suitability of using (47)Sc for therapeutic purposes. On the basis of our recent results obtained with (44)Sc-folate, the present work confirms the applicability of (44)Sc/(47)Sc as an excellent matched pair of nuclides for PET imaging and radionuclide therapy.
Keywords: 47Sc; SPECT; folate receptor; folic acid; radionuclide therapy.
© 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.