Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of the clonal complex (CC) 398 became primarily known as colonizers of livestock animals. In the past few years, they have been increasingly introduced into hospitals with subsequent emergence of human infections. However, the (re-)adaptation to the human host is only incompletely understood. This study aimed to assess virulence properties of LA-MRSA CC398 by functional modeling of infection and colonization processes. A selection of 15 human LA-MRSA CC398 isolates and 11 pig-colonizing isolates were characterized regarding their virulence capacities and compared with human isolates of hospital-acquired (HA)-MRSA (CC5, CC22 and CC45) and community-associated (CA)-MRSA (CC8, CC30 and CC80) clonal lineages. Our investigations demonstrated that LA-MRSA CC398 adhered less efficient to human cells and human/bovine plasma fibronectin than CA-MRSA and HA-MRSA isolates. In contrast, the LA-MRSA CC398 isolates revealed a high cytotoxic potential comparable to certain CA-MRSA. Comparing the most prevalent LA-MRSA CC398 spa types (t011, t034, t108), isolates associated with spa t108 showed an increased adhesive and invasive potential paired with an increased ability to evade phagocytosis. The results underline both the pathogenic potential of LA-MRSA in general and the heterogeneity within the CC398 clade regarding the virulence characteristics of CC398 subpopulations. Assuming an ongoing (re-)adaptation to the human host combined with a huge reservoir of LA-MRSA CC398 in livestock and constant zoonotic transmission, the LA-MRSA CC398 lineage has the potential to pose a serious threat to human health.
Keywords: Clonal complex CC398; Host–cell interaction; Human host; Livestock-associated MRSA; S. aureus; Virulence.
Copyright © 2014 Elsevier GmbH. All rights reserved.