We investigated the structures of L-arabino-galactooligosaccharides released from the sugar moieties of a radish arabinogalactan-protein (AGP) by the action of exo-β-(1→3)-galactanase. We detected a series of neutral β-(1 → 6)-linked galactooligosaccharides forming branches of one to up to at least 19 consecutive Gal groups, together with corresponding acidic derivatives terminating in 4-O-methyl-glucuronic acid (4-Me-GlcA) at the non-reducing end. Some oligosaccharide chains of degree of polymerization (dp) higher than 3 for neutral, and 4 for acidic oligomers were modified with L-Araf residues. The acidic tetrasaccharide 4-Me-β-GlcA-(1 → 6)[α-L-Araf-(1 → 3)]-β-Gal-(1 → 6)-Gal was detected as an abundant L-Araf-containing oligosaccharide among these neutral and acidic oligomers. A pentasaccharide containing an additional L-Araf group attached to the L-Ara in the tetrasaccharide through an α-(1 → 5)-linkage was also found. We observed L-arabino-galactooligosaccharides substituted with single or disaccharide L-Araf units at different Gal residues along these neutral and acidic β-(1 → 6)-galactooligosaccharide chains, indicating that these side chains are highly variable in length and substituted variously with L-Araf residues.
Keywords: L-arabino-galactooligosaccharide; arabinogalactan-protein; exo-β-(1→3)-galactanase; radish; α-L-arabinofuranosidase.