Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach

Appl Environ Microbiol. 2014 Sep;80(18):5854-65. doi: 10.1128/AEM.01941-14. Epub 2014 Jul 18.

Abstract

Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyltransferases / genetics
  • Acyltransferases / metabolism
  • Antigens, Bacterial / genetics
  • Antigens, Bacterial / metabolism*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Chlamydia trachomatis / genetics
  • Endopeptidases / metabolism*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Membrane Transport Proteins / metabolism*
  • Mycobacterium tuberculosis / genetics
  • Protein Transport
  • Salmonella typhimurium / genetics
  • Salmonella typhimurium / metabolism*
  • Secretory Vesicles / metabolism*

Substances

  • Antigens, Bacterial
  • Bacterial Proteins
  • ESAT-6 protein, Mycobacterium tuberculosis
  • Membrane Transport Proteins
  • Rv2660c protein, Mycobacterium tuberculosis
  • Acyltransferases
  • antigen 85B, Mycobacterium tuberculosis
  • Endopeptidases
  • hemoglobin protease Hbp