Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies

IEEE Trans Med Imaging. 2014 Dec;33(12):2332-41. doi: 10.1109/TMI.2014.2340135. Epub 2014 Jul 17.

Abstract

Attenuation correction is an essential requirement for quantification of positron emission tomography (PET) data. In PET/CT acquisition systems, attenuation maps are derived from computed tomography (CT) images. However, in hybrid PET/MR scanners, magnetic resonance imaging (MRI) images do not directly provide a patient-specific attenuation map. The aim of the proposed work is to improve attenuation correction for PET/MR scanners by generating synthetic CTs and attenuation maps. The synthetic images are generated through a multi-atlas information propagation scheme, locally matching the MRI-derived patient's morphology to a database of MRI/CT pairs, using a local image similarity measure. Results show significant improvements in CT synthesis and PET reconstruction accuracy when compared to a segmentation method using an ultrashort-echo-time MRI sequence and to a simplified atlas-based method.

MeSH terms

  • Algorithms
  • Brain / anatomy & histology
  • Brain / diagnostic imaging
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Multimodal Imaging / methods*
  • Neuroimaging / methods*
  • Positron-Emission Tomography / methods*