Background/aims: We analyzed the vitamin D receptor (VDR) gene in 2 Greek patients who exhibited the classical features of hereditary vitamin D-resistant rickets (HVDRR) type II, including severe bone deformities and alopecia. We also describe the clinical phenotypes and the response to treatment of our patients.
Methods: Genomic DNA was extracted from peripheral blood samples of both patients. Coding region and flanking introns of VDR gDNA was amplified and direct sequenced.
Results: A unique cytosine to thymine (C>T) transition was identified at nucleotide position 1066 (c.1066C>T) in the ligand-binding domain of the VDR gene of both patients, predicting the substitution of a glutamine to a terminal codon at position 356 (Gln356stop).
Conclusions: The novel nonsense mutation c.1066C>T (Gln356stop) is expected to result in a VDR protein 71 amino acids shorter and thus to affect the normal VDR function. In particular, the missing protein part alters the VDR heterodimerization with the retinoid X receptor which has been correlated with the presence of alopecia. Both patients were introduced to treatment with supraphysiological doses of 1α-calcidiol which improved their clinical phenotypes except for alopecia.
© 2014 S. Karger AG, Basel.