A better understanding of the abdominal wall biomechanics could help designing new treatments for incisional hernia. In the current study, an experimental protocol was developed to evaluate the contributions of the abdominal wall components to the structural response of the anterior part of the abdominal wall. The specimens underwent 3 dissections (removal of (1) skin and subcutaneous fat, (2) anterior rectus sheath, (3) rectus abdominis muscles). After each dissection, they were subjected to air pressure up to 3 kPa. Ultrasound images and associated elastographic maps were collected at 0, 2 and 3 kPa in the intact state and strains on the internal surface were calculated using stereo-correlation in all states. Strains on the rectus abdominis and linea alba were analyzed. After the dissection of the anterior sheath of the rectus abdominis, longitudinal strain was found significantly different on the linea alba (5% at 3 kPa) and on the rectus abdominis area (11% at 3 kPa). The current results highlight the importance of the rectus sheath in the structural response of the anterior part of the abdominal wall ex vivo. Geometrical characteristics such as thicknesses and radii of curvature and mechanical properties (shear modulus of the rectus abdominis, e.g. at 0 pressure the average value is 14 kPa) were provided in order to facilitate future modeling efforts.
Keywords: Component dissection; Elasticity; Rectus abdominis; Supersonic shear imaging.
Copyright © 2014 Elsevier Ltd. All rights reserved.