Objectives: Impaired cerebral autoregulation may be associated with poor outcome in diabetic ketoacidosis. We examined change in cerebral autoregulation during diabetic ketoacidosis treatment.
Design: Prospective observational cohort study.
Setting: Tertiary care children's hospital.
Patients/subjects: Children admitted to the ICU with diabetic ketoacidosis (venous pH < 7.3, glucose > 300 mg/dL, HCO3 < 15 mEq/L, and ketonuria) constituted cases, and children with type I diabetes without diabetic ketoacidosis constituted controls.
Interventions: None.
Measurements and main results: Between 2005 and 2009, 32 cases and 50 controls were enrolled. Transcranial Doppler ultrasonography was used to measure middle cerebral artery flow velocities, and cerebral autoregulation testing was achieved via tilt-table testing. Cases underwent two and controls underwent one cerebral autoregulation test. Cerebral autoregulation was quantified by the autoregulatory index (autoregulatory index < 0.4 = impaired and autoregulatory index 0.4-1.0 = intact autoregulation). The first autoregulation test was obtained early (time 1, 12-24 hr; median [interquartile range], 8 hr [5-18 hr]) during diabetic ketoacidosis treatment, and a second autoregulation test was obtained during recovery (time 2, 36-72 hr; median [ interquartile range], 46 hr [40-59 hr]) from time 0 (defined as time of insulin start). Cases had lower autoregulatory index at time 1 than time 2 (p < 0.001) as well lower autoregulatory index than control subjects (p < 0.001). Cerebral autoregulation was impaired in 40% (n = 13) of cases at time 1 and in 6% (n = 2) of cases at time 2. Five cases (17%) showed persistent impairment of cerebral autoregulation between times 1 and 2 of treatment. All control subjects had intact cerebral autoregulation.
Conclusions: Impaired cerebral autoregulation was common early during diabetic ketoacidosis treatment. Although the majority improved during diabetic ketoacidosis treatment, 17% of subjects had impairment between 36 and 72 hours after start of insulin therapy. The observed impaired cerebral autoregulation appears specific to the diabetic ketoacidosis process in patients with type I diabetes.