Recent data suggest that T-cell reactivity against tumor-specific neo-antigens may be central to the clinical efficacy of cancer immunotherapy. The development of personalized vaccines designed to boost T-cell reactivity against patient specific neo-antigens has been proposed largely on the basis of these findings. Work from several groups has demonstrated that novel tumor-specific antigens can be discovered through the use of cancer exome sequencing data, thereby providing a potential pipeline for the development of patient-specific vaccines. Importantly though, it has not been established which fraction of cancer neo-antigens that can be recognized by CD8+ T cells is successfully uncovered with the current exome-based epitope prediction strategies. Here, we use a data set comprising human cancer neo-antigens that was previously identified through the use of unbiased, computational-independent strategies to describe the potential of cancer exome-based neo-antigen discovery. This analysis shows a high sensitivity of exome-guided neo-antigen prediction of approximately 70%. We propose that future research should focus on the analysis and optimization of the specificity of neo-antigen prediction, and should undoubtedly entail the clinical evaluation of patient-specific vaccines with the aim of inducing immunoreactivity against tumor-displayed neo-antigens in a physiologically relevant context.
Keywords: epitope prediction; immune monitoring; neo-antigens; tumor vaccine; whole exome sequencing.