Extracellular tumor acidosis largely results from an exacerbated glycolytic flux in cancer and cancer-associated cells. Conversely, little is known about how tumor cells adapt their metabolism to acidosis. Here, we demonstrate that long-term exposure of cancer cells to acidic pH leads to a metabolic reprogramming toward glutamine metabolism. This switch is triggered by the need to reduce the production of protons from glycolysis and further maintained by the NAD(+)-dependent increase in SIRT1 deacetylase activity to ensure intracellular pH homeostasis. A consecutive increase in HIF2α activity promotes the expression of various transporters and enzymes supporting the reductive and oxidative glutamine metabolism, whereas a reduction in functional HIF1α expression consolidates the inhibition of glycolysis. Finally, in vitro and in vivo experiments document that acidosis accounts for a net increase in tumor sensitivity to inhibitors of SIRT1 and glutaminase GLS1. These findings highlight the influence that tumor acidosis and metabolism exert on each other.
©2014 American Association for Cancer Research.