Aim: To investigate the mechanisms underlying the hepatotoxicity of timosaponin A3 (TA3), a steroidal saponin from Anemarrhena asphodeloides, in rats.
Methods: Male SD rats were administered TA3 (100 mg·kg(-1)·d(-1), po) for 14 d, and the blood and bile samples were collected after the final administration. The viability of a sandwich configuration of cultured rat hepatocytes (SCRHs) was assessed using WST-1. Accumulation and biliary excretion index (BEI) of d8-TCA in SCRHs were determined with LC-MS/MS. RT-PCR and Western blot were used to analyze the expression of relevant genes and proteins. ROS and ATP levels, and mitochondrial membrane potential (MMP) were measured. F-actin cytoskeletal integrity was assessed under confocal microscopy.
Results: TA3 administration in rats significantly elevated the total bile acid in serum, and decreased bile acid (BA) component concentrations in bile. TA3 inhibited the viability of the SCRHs with an IC50 value of 15.21±1.73 μmol/L. Treatment of the SCRHs with TA3 (1-10 μmol/L) for 2 and 24 h dose-dependently decreased the accumulation and BEI of d8-TCA. The TA3 treatment dose-dependently decreased the expression of BA transporters Ntcp, Bsep and Mrp2, and BA biosynthesis related Cyp7a1 in hepatocytes. Furthermore, the TA3 treatment dose-dependently increased ROS generation and HO-1 expression, decreased the ATP level and MMP, and disrupted F-actin in the SCRHs. NAC (5 mmol/L) significantly ameliorated TA3-induced effects in the SCRHs, whereas mangiferin (10-200 μg/mL) almost blocked TA3-induced ROS generation.
Conclusion: TA3 triggers liver injury through inducing ROS generation and suppressing the expression of BA transporters. Mangiferin, an active component in Anemarrhena, may protect hepatocytes from TA3-induced hepatotoxicity.