We explored how phonological network structure influences the age of words' first appearance in children's (14-50 months) speech, using a large, longitudinal corpus of spontaneous child-caregiver interactions. We represent the caregiver lexicon as a network in which each word is connected to all of its phonological neighbors, and consider both words' local neighborhood density (degree), and also their embeddedness among interconnected neighborhoods (clustering coefficient and coreness). The larger-scale structure reflected in the latter two measures is implicated in current theories of lexical development and processing, but its role in lexical development has not yet been explored. Multilevel discrete-time survival analysis revealed that children are more likely to produce new words whose network properties support lexical access for production: high degree, but low clustering coefficient and coreness. These effects appear to be strongest at earlier ages and largely absent from 30 months on. These results suggest that both a word's local connectivity in the lexicon and its position in the lexicon as a whole influences when it is learned, and they underscore how general lexical processing mechanisms contribute to productive vocabulary development.
Keywords: Phonological development; clustering coefficient; coreness; neighborhood density; network science; phonological networks; survival analysis; vocabulary growth.