A new type of titanate nanotube (TNT) coating is investigated for exploitation in biosensor applications. The TNT layers were prepared from stable but additive-free sols without applying any binding compounds. The simple, fast spin-coating process was carried out at room temperature, and resulted in well-formed films around 10nm thick. The films are highly transparent as expected from their nanostructure and may, therefore, be useful as coatings for surface-sensitive optical biosensors to enhance the specific surface area. In addition, these novel coatings could be applied to medical implant surfaces to control cellular adhesion. Their morphology and structure was characterized by spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), and their chemical state by X-ray photoelectron spectroscopy (XPS). For quantitative surface adhesion studies, the films were prepared on optical waveguides. The coated waveguides were shown to still guide light; thus, their sensing capability remains. Protein adsorption and cell adhesion studies on the titanate nanotube films and on smooth control surfaces revealed that the nanostructured titanate enhanced the adsorption of albumin; furthermore, the coatings considerably enhanced the adhesion of living mammalian cells (human embryonic kidney and preosteoblast).
Keywords: Additive-free; Cell adhesion; Implant; Nanostructured layer; Optical biosensor; Osteoblast.
Copyright © 2014 Elsevier B.V. All rights reserved.