Background: Early detection screening of asymptomatic populations for low prevalence cancers requires a highly specific test in order to limit the cost and anxiety produced by falsely positive identifications. Most solid cancers are a heterogeneous collection of diseases as they develop from various combinations of genetic lesions and epigenetic modifications. Therefore, it is unlikely that a single test will discriminate all cases of any particular cancer type. We propose a novel, intuitive biomarker panel design that accommodates disease heterogeneity by allowing for diverse biomarker selection that increases diagnostic accuracy.
Methods: Using characteristics of nine pancreatic ductal adenocarcinoma (PDAC) biomarkers measured in human sera, we modeled the behavior of biomarker panels consisting of a sum of indicator variables representing a subset of biomarkers within a larger biomarker data set. We then chose a cutoff for the sum to force specificity to be high and delineated the number of biomarkers required for adequate sensitivity of PDAC in our panel design.
Results: The model shows that a panel consisting of 40 non-correlated biomarkers characterized individually by 32% sensitivity at 95% specificity would require any 7 biomarkers to be above their respective thresholds and would result in a panel specificity and sensitivity of 99% each.
Conclusions: A highly accurate blood-based diagnostic panel can be developed from a reasonable number of individual serum biomarkers that are relatively weak classifiers when used singly. A panel constructed as described is advantageous in that a high level of specificity can be forced, accomplishing a prerequisite for screening asymptomatic populations for low-prevalence cancers.