Helicobacter pylori is a well-known pathogen involved in the development of peptic ulcer, gastric adenocarcinoma and other forms of gastric cancer. Recently, there has been more considerable interest in strain-specific genes located in plasticity regions with great genetic variability. However, little is known about many of these genes. Studies suggested that certain genes in this region may play key roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. JHP933, a conserved putative protein of unknown function, is encoded by the gene in plasticity region of H. pylori strain J99. Here we have determined the structure of JHP933. Our work demonstrates that JHP933 is a nucleotidyltransferase superfamily protein with a characteristic αβαβαβα topology. A superposition demonstrates overall structural homology of the JHP933 N-terminal fragment with lincosamide antibiotic adenylyltransferase LinA and identifies a possible substrate-binding cleft of JHP933. Furthermore, through structural comparison with LinA and LinB, we pinpoint conservative active site residues which may contribute to divalent ion coordination and substrate binding.