The biosynthesis and utilization of CoA (coenzyme A), the ubiquitous and essential acyl carrier in all organisms, have long been regarded as excellent targets for the development of new antimicrobial drugs. Moreover, bioinformatics and biochemical studies have highlighted significant differences between several of the bacterial enzyme targets and their human counterparts, indicating that selective inhibition of the former should be possible. Over the past decade, a large amount of structural and mechanistic data has been gathered on CoA metabolism and the CoA biosynthetic enzymes, and this has facilitated the discovery and development of several promising candidate antimicrobial agents. These compounds include both target-specific inhibitors, as well as CoA antimetabolite precursors that can reduce CoA levels and interfere with processes that are dependent on this cofactor. In the present mini-review we provide an overview of the most recent of these studies that, taken together, have also provided chemical validation of CoA biosynthesis and utilization as viable targets for antimicrobial drug development.