Combining data and meta-analysis to build Bayesian networks for clinical decision support

J Biomed Inform. 2014 Dec:52:373-85. doi: 10.1016/j.jbi.2014.07.018. Epub 2014 Aug 9.

Abstract

Complex clinical decisions require the decision maker to evaluate multiple factors that may interact with each other. Many clinical studies, however, report 'univariate' relations between a single factor and outcome. Such univariate statistics are often insufficient to provide useful support for complex clinical decisions even when they are pooled using meta-analysis. More useful decision support could be provided by evidence-based models that take the interaction between factors into account. In this paper, we propose a method of integrating the univariate results of a meta-analysis with a clinical dataset and expert knowledge to construct multivariate Bayesian network (BN) models. The technique reduces the size of the dataset needed to learn the parameters of a model of a given complexity. Supplementing the data with the meta-analysis results avoids the need to either simplify the model - ignoring some complexities of the problem - or to gather more data. The method is illustrated by a clinical case study into the prediction of the viability of severely injured lower extremities. The case study illustrates the advantages of integrating combined evidence into BN development: the BN developed using our method outperformed four different data-driven structure learning methods, and a well-known scoring model (MESS) in this domain.

Keywords: Bayesian networks; Clinical decision support; Evidence synthesis; Evidence-based medicine; Meta-analysis.

MeSH terms

  • Algorithms
  • Bayes Theorem*
  • Decision Support Systems, Clinical*
  • Evidence-Based Medicine*
  • Humans
  • Meta-Analysis as Topic
  • Models, Theoretical
  • Vascular System Injuries