Purpose: To assess the therapeutic value of biomarker-guided chemotherapy in patients with advanced non-small cell lung cancer (NSCLC).
Methods: Eighty-five NSCLC patients at stage IIIb or IV were divided into two groups based on the feasibility of biomarker analysis. Group A included patients with biomarker data (n = 41); Group B were patients without biomarker results (n = 44). Tumor samples obtained by fiberoptic bronchoscopy and computerized tomography-guided needle biopsy were analyzed by immunohistochemistry for intratumoral level of excision repair cross-complementing gene 1 (ERCC1), ribonucleotide reductase M1 (RRM1), and β-tubulin III. Chemotherapy regimens in Group A were determined according to the status of molecular signatures, whereas a standard gemcitabine plus cisplatin regimen was used for Group B. Tumor response, patient survival, and adverse effects were monitored for both groups.
Results: The overall response rate, defined as complete response plus partial response, was 56.1% for Group A, significantly higher than that in Group B (31.8%; P = 0.024). The median progression-free survival (PFS) time was 5.2 months for Group A, significantly longer than that of Group B (4.1 months; P = 0.026). The 1-year survival rate of Group A was 65.9%, significantly higher than that of Group B (40.9%; P = 0.021), whereas the median overall survival times were 13.5 versus 12.5 months for Groups A and B, respectively (P = 0.483). The adverse effects in the two groups were essentially the same.
Conclusions: Biomarker-tailored chemotherapy based on ERCC1, RRM1, and β-tubulin III expression showed significantly increased response rate, median PFS time, and 1-year survival rate in patients with NSCLC.