This work aimed to evaluate the glycophenotype in normal prostate, bening prostatic hyperplasia (BPH) and prostatic adenocarcinoma (PCa) tissues by a chemiluminescent method. Concanavalin A (Con A), Ulex europaeus agglutinin (UEA-I) and Peanut agglutinin (PNA) lectins were conjugated to acridinium ester (lectins-AE). These conjugates remained capable to recognize their specific carbohydrates. Tissue samples were incubated with lectins-AE. The chemiluminescence of the tissue-lectin-AE complex was expressed in relative light units (RLU). Transformed tissues (0.25 cm(2) by 8 µm of thickness) showed statistical significant lower α-D-glucose/mannose (BPH: 226,931 ± 17,436; PCa: 239,520 ± 12,398) and Gal-β(1-3)-GalNAc (BPH: 28,754 ± 2,157; PCa: 16,728 ± 1,204) expression than normal tissues (367,566 ± 48,550 and 409,289 ± 22,336, respectively). However, higher α-L-fucose expression was observed in PCa (251,118 ± 14,193) in relation to normal (200,979 ± 21,318) and BHP (169,758 ± 10,264) tissues. It was observed an expressive decreasing of the values of RLU by inhibition of the interaction between tissues and lectins-AE using their specific carbohydrates. The relationship between RLU and tissue area showed a linear correlation for all lectin-AE in both transformed tissues. These results indicated that the used method is an efficient tool for specific, sensitive and quantitative analyses of prostatic glycophenotype.
Keywords: Chemiluminescence; benign prostatic hyperplasia; carbohydrates; lectins; prostatic cancer.