Angular and polarization response of multimode sensors with resistive-grid absorbers

J Opt Soc Am A Opt Image Sci Vis. 2014 Jul 1;31(7):1557-76. doi: 10.1364/JOSAA.31.001557.

Abstract

High-sensitivity receiver systems with near-ideal polarization sensitivity are highly desirable for development of millimeter and submillimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this work, we examine the angular- and polarization-dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of η/2, where η is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross-polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of η/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to ≲60°. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of the recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this work offer key tools in the design consideration of the instruments using the multimoded polarimeters.