P1 bacteriophages lysogenize bacteria as independent plasmid-like elements. We describe here a P1-like bacteriophage, RCS47, carrying a blaSHV-2 gene, isolated from a clinical strain of Escherichia coli from phylogroup B1, and we report the prevalence of P1-like prophages in natural E. coli isolates. We found that 70% of the sequence of RCS47, a 115-kb circular molecule, was common to the reference P1 bacteriophage under GenBank accession no. AF234172.1, with the shared sequences being 99% identical. RCS47 had acquired two main foreign DNA fragments: a 9,636-bp fragment mobilized by two IS26 elements containing a blaSHV-2 gene, and an 8,544-bp fragment mobilized by two IS5 elements containing an operon encoding a dimethyl sulfoxide reductase. The reference P1 prophage plasmid replication gene belonged to the IncY incompatibility group, whereas that of RCS47 was from an unknown group. The lytic capacity of RCS47 and blaSHV-2 gene transduction, through the lysogenization of RCS47 in the recipient E. coli strains, were not demonstrated. The prevalence of P1-like prophages in various animal and human E. coli strain collections, as determined by the PCR detection of repL, the lytic replication gene, was 12.6%. No differences in the prevalences of these prophages were found between extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing strains (P = 0.69), but this prevalence was lower in phylogroup B2 than in the other phylogroups (P = 0.008), suggesting epistatic interactions between P1 family phages and the genetic background of E. coli strains. P1-like phages are part of the mobile elements that carry antibiotic resistance. The high prevalence of P1-like prophages suggests their role may be underestimated.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.