Experiments and atomistic simulations of polypeptides have revealed structural intermediates that promote or inhibit conformational transitions to the native state during folding. We invoke a concept of "kinetic frustration" to quantify the prevalence and impact of these behaviors on folding rates within a large set of atomistic simulation data for 10 fast-folding proteins, where each protein's conformational space is represented as a Markov state model of conformational transitions. Our graph theoretic approach addresses what conformational features correlate with folding inhibition and therefore permits comparison among features within a single protein network and also more generally between proteins. Nonnative contacts and nonnative secondary structure formation can thus be quantitatively implicated in inhibiting folding for several of the tested peptides.