Objective: Cortical spreading depolarizations are a pathophysiological mechanism and candidate target for advanced monitoring in acute brain injury. Here we investigated manifestations of spreading depolarization in continuous electroencephalography (EEG) as a broadly applicable, noninvasive method for neuromonitoring.
Methods: Eighteen patients requiring surgical treatment of traumatic brain injury were monitored by invasive electrocorticography (ECoG; subdural electrodes) and noninvasive scalp EEG during intensive care. Spreading depolarizations were first identified in subdural recordings, and EEG was then examined visually and quantitatively to identify correlates.
Results: A total of 455 spreading depolarizations occurred during 65.9 days of simultaneous ECoG/EEG monitoring. For 179 of 455 events (39%), depolarizations caused temporally isolated, transient depressions of spontaneous EEG amplitudes to 57% (median) of baseline power. Depressions lasted 21 minutes (median) and occurred as suppressions of high-amplitude delta activity present as a baseline pattern in the injured hemisphere. For 62 of 179 (35%) events, isolated depressions showed a clear spread of depression between EEG channels with delays of 17 minutes (median), sometimes spanning the entire hemisphere. A further 188 of 455 (41%) depolarizations were associated with continuous EEG depression that lasted hours to days due to ongoing depolarizations. Depolarizations were also evidenced in EEG as shifts in direct current potentials.
Interpretation: Leão's spreading depression can be observed in clinically standard, continuous scalp EEG, and underlying depolarizations can spread widely across the injured cerebral hemisphere. These results open the possibility of monitoring noninvasively a neuronal pathophysiological mechanism in a wide range of disorders including ischemic stroke, subarachnoid hemorrhage, and brain trauma, and suggest a novel application for continuous EEG.
© 2014 American Neurological Association.