Recently, high-quality data were published on the algal growth inhibition caused by 50 non-polar narcotic compounds, of which 39 were liquid compounds with defined water solubility. In the present study, the toxicity data for these liquids were applied to challenge the chemical activity range for baseline toxicity. First, the reported effective concentrations (EC50) were divided by the respective water solubilities (S water), since the obtained EC50/S water ratio essentially equals the effective chemical activity (Ea50). The majority of EC50/S water ratios were within the expected chemical activity range of 0.01-0.1 for baseline toxicity, and none of the ratios were significantly below 0.01. On a practical level, these findings suggest EC50 values for baseline toxicity to be at or above 1% of liquid solubility, which would have been accurate or conservative for all 39 liquids with defined water solubility in the applied dataset. On an environmental risk assessment level, predicted no-effect concentrations (PNECs) for baseline toxicity could even be set as a percentage of saturation, which can easily be extended to mixtures. However, EC50 values well below 1% of liquid saturation can still occur and would be a direct indication of excess toxicity.
Keywords: Algal toxicity; Baseline toxicity; Chemical activity; Chronic toxicity; QSAR.
Copyright © 2014 Elsevier Ltd. All rights reserved.