Background: Identification of primary melanoma patients at the highest risk of recurrence remains a critical challenge, and monitoring for recurrent disease is limited to costly imaging studies. We recently reported our array-based discovery of prognostic serum miRNAs in melanoma. In the current study, we examined the clinical utility of these serum-based miRNAs for prognosis as well as detection of melanoma recurrence.
Methods: Serum levels of 12 miRNAs were tested using qRT-PCR at diagnosis in 283 melanoma patients (training cohort, n = 201; independent validation, n = 82; median follow-up, 68.8 months). A refined miRNA signature was chosen and evaluated. We also tested the potential clinical utility of the miRNAs in early detection and monitoring of recurrence using multiple longitudinal samples (pre- and postrecurrence) in a subset of 82 patients (n = 225). In addition, we integrated our miRNA signature with publicly available Cancer Genome Atlas data to examine the relevance of these miRNAs to melanoma biology.
Results: Four miRNAs (miR-150, miR-30d, miR-15b, and miR-425) in combination with stage separated patients by recurrence-free survival (RFS) and overall survival (OS) and improved prediction of recurrence over stage alone in both the training and validation cohorts (training RFS and OS, P < .001; validation RFS, P < .001; OS, P = .005). Serum miR-15b levels significantly increased over time in recurrent patients (P < .001), adjusting for endogenous controls as well as age, sex, and initial stage. In nonrecurrent patients, miR-15b levels were not significantly changed with time (P =.17).
Conclusions: Data demonstrate that serum miRNAs can improve melanoma patient stratification over stage and support further testing of miR-15b to guide patient surveillance.
Keywords: biomarkers; melanoma; microRNAs; recurrence; serum markers.
© 2014 American Cancer Society.