Synthesis, thermal behavior, and dehydrogenation kinetics study of lithiated ethylenediamine

Chemistry. 2014 Oct 13;20(42):13636-43. doi: 10.1002/chem.201403047. Epub 2014 Aug 27.

Abstract

The lithiation of ethylenediamine by LiH is a stepwise process to form the partially lithiated intermediates LiN(H)CH2 CH2 NH2 and [LiN(H)CH2 CH2 NH2 ][LiN(H)CH2 CH2 N(H)Li]2 prior to the formation of dilithiated ethylenediamine LiN(H)CH2 CH2 N(H)Li. A reversible phase transformation between the partial and dilithiated species was observed. One dimensional {Lin Nn } ladders and three-dimensional network structures were found in the crystal structures of LiN(H)CH2 CH2 NH2 and LiN(H)CH2 CH2 N(H)Li, respectively. LiN(H)CH2 CH2 N(H)Li undergoes dehydrogenation with an activation energy of 181±8 kJ mol(-1) , whereas the partially lithiated ethylenediamine compounds were polymerized and released ammonia at elevated temperatures. The dynamical dehydrogenation mechanism of the dilithiated ethylenediamine compounds was investigated by using the Johnson-Mehl-Avrami equation.

Keywords: amines; crystallization; dehydrogenation; ladder polymers; lithiation.