Single cell sequencing reveals low levels of aneuploidy across mammalian tissues

Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13409-14. doi: 10.1073/pnas.1415287111. Epub 2014 Sep 2.

Abstract

Whole-chromosome copy number alterations, also known as aneuploidy, are associated with adverse consequences in most cells and organisms. However, high frequencies of aneuploidy have been reported to occur naturally in the mammalian liver and brain, fueling speculation that aneuploidy provides a selective advantage in these organs. To explore this paradox, we used single cell sequencing to obtain a genome-wide, high-resolution assessment of chromosome copy number alterations in mouse and human tissues. We find that aneuploidy occurs much less frequently in the liver and brain than previously reported and is no more prevalent in these tissues than in skin. Our results highlight the rarity of chromosome copy number alterations across mammalian tissues and argue against a positive role for aneuploidy in organ function. Cancer is therefore the only known example, in mammals, of altering karyotype for functional adaptation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aneuploidy*
  • Animals
  • Brain / metabolism
  • Humans
  • Liver / metabolism
  • Male
  • Mammals / genetics*
  • Mice
  • Organ Specificity / genetics*
  • Reproducibility of Results
  • Sequence Analysis, DNA
  • Single-Cell Analysis / methods*
  • Skin / metabolism

Associated data

  • SRA/SRP041670